6,7-Dihydro-6,6-dimethylbenzofurazan-4(5H)-one 3-Oxide

By M. Calleri
Istituto di Mineralogia, Cristallografia e Geochimica dell'Università, Via San Massimo 24, 10123 Torino, Italy
and D. Viterbo
Istituto di Chimica Fisica dell'Università, Corso M. d'Azeglio 48, 10125 Torino, Italy

(Received 23 February 1976; accepted 12 March 1976)

Abstract

C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}\), triclinic, $P \overline{\mathrm{I}} ; \quad a=10 \cdot 625$ (8), $b=6.393$ (7), $\quad c=6.863$ (7) $\AA, \quad \alpha=102.32$ (5), $\quad \beta=$ $85.07(5), \gamma=105.71(5)^{\circ} ; \quad Z=2, \quad D_{c}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}$; m.p. $85-86^{\circ}$. Crystal dimensions: $0.45 \times 0.65 \times 0.70$ mm . The structural assignment proposed on the grounds of spectrophotometric results has been confirmed: the N-oxide group is adjacent to the keto group; the furoxan ring is planar; and little or no conjugation takes place between the N-oxide and the keto group.

Introduction. The title fused-ring furoxan derivative was synthesized by Ackrell \& Boulton (1973) as part of a study of furoxans with electron-withdrawing substituents. The yellow prismatic crystals proved suitable for X-ray analysis. Weissenberg photographs showed no systematic absences and $P \overline{1}$ was tentatively chosen. Approximate cell dimensions were obtained from the Weissenberg photographs ($\mathrm{Cu} K \alpha$) and refined by least squares from diffractometer measurements (Mo $K \alpha$). The intensities of 2050 independent reflexions were collected on a Hilger \& Watts four-circle automated diffractometer by the $\theta-2 \theta$ step-scanning technique (Mo $K \alpha, \beta$-filtered radiation); 410 reflexions with $I \leq 2 \cdot 5 \sigma(I)$ were treated as unobserved. The structure was solved with MULTAN (Declercq, Germain,

Main \& Woolfson, 1973). The statistics of the normalized structure factors confirmed the presence of the inversion centre. With $232 E$'s ($E_{\text {min }}=1 \cdot 6$) and 1534 \sum_{2} relationships, 16 sets of phases were generated. The map computed with the most consistent set showed all 13 non-hydrogen atoms. The least-squares refinement was by full-matrix methods, refining anisotropically the non-hydrogen atoms; all H atoms were located on a difference map and refined isotropically. With a secondary extinction parameter (Larson, 1970) R was 0.068 at convergence ($R=0.080$ for all 2050 reflexions).* The weighting scheme in the final stage was: $w=P /\left[A\left|F_{o}\right|^{2}+B\left|F_{o}\right|+C\right]$ if $\left|F_{o}\right| \geq$ $2\left|F_{\text {min }}\right|\left(2\left|F_{\text {min }}\right|=9 \cdot 0,\left|F_{o}\right|\right.$ on absolute scale $)$ or $w=$ $D\left|F_{o}\right|^{2}+E\left|F_{o}\right|+G$ if $\left|F_{o}\right|<2\left|F_{\text {min }}\right|$. The coefficients were: $A=0.0142, B=-0.050, C=0.280, D=-0.0309$, $E=0 \cdot 483, G=0 \cdot 206, P=2 \cdot 06$. The atomic coordinates and temperature factors are given in Table 1 and the bond distances and angles in Table 2. Fig. 1 shows the numbering scheme on a projection of the molecule onto the mean plane

^[* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31729 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.]

Table 1. Atomic coordinates and temperature factors
Standard deviations are shown in parentheses. The anisotropic temperature factors are the coefficients of the expression: $\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right]$.

	${ }^{x}$	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{O}(1)$	$0 \cdot 6946$ (2)	$0 \cdot 5708$ (3)	0.7957 (3)	$6 \cdot 21$ (3)	6.07 (11)	3.91 (9)	$1 \cdot 49$ (9)	-0.66 (8)	-0.75 (8)
$\mathrm{O}(2)$	$0 \cdot 4796$ (2)	$0 \cdot 3741$ (4)	0.7697 (3)	$5 \cdot 64$ (11)	$6 \cdot 35$ (11)	$4 \cdot 51$ (10)	$1 \cdot 89$ (9)	$1 \cdot 39$ (8)	0.77 (8)
$\mathrm{O}(3)$	$0 \cdot 4463$ (2)	$0 \cdot 1049$ (3)	$0 \cdot 3431$ (3)	$3 \cdot 53$ (8)	5.79 (10)	4.51 (9)	0.65 (7)	0.00	0.79 (7)
N(1)	$0 \cdot 8037$ (2)	$0 \cdot 5945$ (4)	$0 \cdot 6679$ (4)	$5 \cdot 11$ (12)	$5 \cdot 65$ (13)	5.08 (12)	0.91 (10)	-0.62 (10)	-0.71 (10)
N(2)	$0 \cdot 5846$ (2)	$0 \cdot 4144$ (4)	$0 \cdot 6828$ (3)	$4 \cdot 58$ (10)	$4 \cdot 72$ (11)	3.63 (9)	1-28 (8)	$0 \cdot 13$ (8)	0.45 (8)
C(1)	$0 \cdot 7655$ (2)	$0 \cdot 4680$ (4)	$0 \cdot 4945$ (4)	3.95 (11)	3.99 (11)	$4 \cdot 15$ (12)	0.87 (9)	-0.39 (9)	0.07 (9)
C(2)	0.6329 (2)	$0 \cdot 3564$ (4)	$0 \cdot 5004$ (3)	$3 \cdot 86$ (10)	4.06 (11)	$3 \cdot 13$ (10)	1.28 (9)	$0 \cdot 11$ (8)	0.39 (8)
C(3)	$0 \cdot 5618$ (2)	$0 \cdot 1948$ (4)	$0 \cdot 3325$ (4)	$3 \cdot 58$ (11)	4.04 (11)	$3 \cdot 44$ (10)	1.09 (9)	-0.16 (8)	0.75 (8)
C(4)	0.6491 (3)	$0 \cdot 1640$ (5)	$0 \cdot 1490$ (4)	$4 \cdot 10$ (12)	$4 \cdot 46$ (13)	3.45 (11)	$1 \cdot 12$ (10)	0.01 (9)	$0 \cdot 16$ (10)
C(5)	0.7952 (2)	$0 \cdot 2070$ (4)	$0 \cdot 1832$ (4)	$3 \cdot 58$ (10)	$3 \cdot 65$ (11)	4.00 (11)	1.02 (8)	$0 \cdot 45$ (8)	$0 \cdot 60$ (9)
C(6)	0.8475 (3)	$0 \cdot 4399$ (5)	$0 \cdot 3096$ (4)	$3 \cdot 74$ (12)	$3 \cdot 88$ (12)	$5 \cdot 16$ (14)	0.67 (10)	0.21 (10)	$0 \cdot 70$ (10)
C(7)	$0 \cdot 8688$ (4)	$0 \cdot 1936$ (7)	-0.0193 (5)	$5 \cdot 20$ (17)	$6 \cdot 13$ (19)	$5 \cdot 18$ (16)	$1 \cdot 45$ (14)	1.66 (13)	0.79 (15)
C(8)	$0 \cdot 8185$ (3)	0.0336 (6)	$0 \cdot 2873$ (6)	$4 \cdot 72$ (15)	$5 \cdot 00$ (16)	$6 \cdot 50$ (18)	1.95 (12)	$0 \cdot 85$ (13)	1.59 (14)
	x	y	z	B		x	y	z	B
H(41)	0.636 (3)	0.256 (5)	0.073 (5)	3.0 (7)	H(42)	0.620 (2)	0.018 (5)	0.090 (4)	$2 \cdot 0$ (6)
H(61)	0.839 (2)	$0 \cdot 547$ (5)	0.235 (4)	$2 \cdot 0$ (6)	H(62)	0.937 (3)	0.453 (4)	0.333 (4)	$2 \cdot 0$ (5)
$\mathrm{H}(71)$	0.858 (3)	$0 \cdot 288$ (6)	-0.089 (5)	$3 \cdot 9$ (9)	H(72)	0.837 (4)	0.053 (7)	-0.094 (6)	$5 \cdot 1$ (9)
H(73)	0.959 (4)	$0 \cdot 217$ (6)	-0.003 (5)	$4 \cdot 5$ (8)	H(81)	0.777 (3)	0.019 (5)	0.413 (5)	$4 \cdot 0$ (8)
H(82)	0.791 (3)	-0.120 (6)	$0 \cdot 210$ (5)	$3 \cdot 5$ (7)	H(83)	0.910 (3)	0.049 (5)	$0 \cdot 310$ (4)	$3 \cdot 3$ (7)

Fig. 1. Projection of the molecule onto the mean plane through the furazan ring: numbering scheme.
through the furazan ring; this unconventional numbering scheme follows that adopted for several other furoxan derivatives (e.g. Calleri, Chiari, Chiesi Villa, Gaetani Manfredotti, Guastini \& Viterbo, 1975).

Discussion. On oxidation of 5,5 -dimethylcyclohexane-1,2,3-trione 1,2 -dioxime, Ackrell \& Boulton (1973) obtained one keto derivative which, on heating in light petroleum and toluene, was isomerized almost quantitatively to the title compound. The structural assign-
Table 2. Bond lengths (\AA) and interbond angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses

1	$1 \cdot 398(4)$	9	$1 \cdot 509(4)$	17	$0 \cdot 92(4)$
2	$1 \cdot 315(4)$	10	$1 \cdot 531(4)$	18	$0 \cdot 95(4)$
3	$1 \cdot 387(3)$	11	$1 \cdot 537(4)$	19	$1 \cdot 523(4)$
4	$1 \cdot 470(3)$	12	$1 \cdot 483(4)$	20	$0 \cdot 94(4)$
5	$1 \cdot 210(3)$	13	$0 \cdot 91(3)$	21	$0 \cdot 99(4)$
6	$1 \cdot 328(3)$	14	$0 \cdot 92(3)$	22	$0 \cdot 97(4)$
7	$1 \cdot 478(3)$	15	$1 \cdot 533(5)$	23	$0 \cdot 97(3)$
8	$1 \cdot 210(3)$	16	$0 \cdot 88(4)$	24	$0 \cdot 96(3)$
1,2	$111 \cdot 8(2)$	10,11	$110 \cdot 1(2)$	15,16	$114(2)$
2,3	$106 \cdot 6(2)$	10,13	$111(2)$	15,17	$108(2)$
3,4	$107 \cdot 6(2)$	10,14	$107(2)$	15,18	$111(2)$
4,5	$117.3(2)$	10,15	$108 \cdot 8(2)$	15,19	$109 \cdot 0(2)$
4,6	$105 \cdot 6(2)$	1019	$110 \cdot 3(2)$	16,17	$107(3)$
5,6	$137 \cdot 1(2)$	11,12	$109 \cdot 7(2)$	16,18	$109(3)$
6,1	$108 \cdot 4(2)$	11,15	$108 \cdot 6(2)$	17,18	$108(3)$
6,7	$126 \cdot 5(2)$	11,19	$109 \cdot 9(2)$	19,20	$119(3)$
7,1	$125 \cdot 0(2)$	11,23	$108(2)$	19,21	$114(3)$
7,8	$122 \cdot 8(2)$	11,24	$106(2)$	19,22	$115(2)$
7,9	$112 \cdot 0(2)$	12,1	$121 \cdot 6(2)$	20,21	$102(3)$
8,9	$125 \cdot 1(2)$	12,2	$126 \cdot 7(3)$	20,22	$103(3)$
9,10	$116 \cdot 7(2)$	12,23	$107(2)$	21,22	$102(3)$
9,13	$105(2)$	12,24	$114(2)$	23,24	$112(2)$
9,14	$105(2)$	13,14	$112(2)$		

ments of these authors, based on NMR spectra, have been confirmed by the present analysis; of the two positional isomers, the more stable is the one with the N oxide next to the keto function (Fig. 1).

The furoxan moiety is planar since none of the atoms is more than $0.006 \AA$ from the mean plane. The endocyclic angles fit the trend found for disubstituted and fused-ring furoxans (e.g. Calleri, Chiari, Chiesi Villa, Gaetani Manfredotti, Guastini \& Viterbo, 1975; Calleri, Viterbo, Chiesi Villa \& Guastini, 1975). The length of bond (6) (Table 2) is not among the longest in fused-ring furoxans (e.g. Britton \& Noland, 1972), but is significantly longer than the expected $\mathrm{N}=\mathrm{C}$ length, $1 \cdot 247 \AA$ (Pauling, 1960). Bond (5) is one of the shortest found in furoxans so far and its length, 1-210 \AA, compares well with the ideal $\mathrm{N}=\mathrm{O}$ length, $1 \cdot 200 \AA$ (Pauling, 1960); the length of bond (8), $1 \cdot 210 \AA$, is typical of $\mathrm{C}=\mathrm{O}$. Therefore the X-ray results do not reveal the appreciable degree of conjugation of the N oxide with the keto group deduced by Ackrell \& Boulton (1973) from spectrophotometric results. Bond (7) is actually shorter than the $\mathrm{C}_{s p 2}-\mathrm{C}_{s p 2}$ length, $1.52 \AA$ (Sutton, 1965), but so are bonds (12) and (1). Hence we may note an appreciable degree of π-delocalization throughout the large molecular fragment $\mathrm{C}(3), \mathrm{C}(2), \mathrm{C}(1), \mathrm{C}(6), \mathrm{N}(1), \mathrm{N}(2)$ which is, in fact, approximately planar with only $\mathrm{C}(3)$ appreciably out of the mean plane. This may account for the fact that the present isomer is largely favoured at the equilibrium. Unfortunately we did not succeed in growing suitable crystals for the other positional isomer.

No abnormal intra- or intermolecular contacts occur.

The authors are grateful to Professor M. M. Woolfson for allowing the use of the diffractometer and the facilities of the Physics Department of York University and to Dr Chawdhury for help during the measurement of the intensities; they thank Dr A. J. Boulton (East Anglia University) for providing the sample and suggesting this work.

References

Ackrell, J. \& Boulton, A. J. (1973). J. Chem. Soc. Perkin I, pp. 351-355.
Britton, D. \& Noland, W. E. (1972). Acta Cryst. B28, 1116-1121.
Calleri, M., Chiari, G., Chiesi Villa, A., Gaetani Manfredotti, A., Guastini, C. \& Viterbo, D. (1975). Acta Cryst. B31, 2384-2389.
Calleri, M., Viterbo, D., Chiesi Villa, A. \& Guastini, C. (1975). Cryst. Struct. Commun. 4, 13-16.

Declercq, J. P., Germain, G., Main, P. \& Woolfson, M. M. (1973). Acta Cryst. A29, 231-234.

Larson, A. C. (1970). Crystallographic Computing, pp. 291294. Copenhagen: Munksgaard.

Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Sutton, L. E. (1965). Tables of Interatomic Distances
and Configuration in Molecules and Ions. London: The Chemical Society.

